4.6 Article

Dynamics of grain boundary motion coupled to shear deformation: An analytical model and its verification by molecular dynamics

Journal

PHYSICAL REVIEW B
Volume 78, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.064106

Keywords

-

Funding

  1. U.S. Department of Energy (Office of Basic Energy Sciences, Division of Materials Sciences)
  2. DOE-BES Computational Materials Science Network (CMSN)

Ask authors/readers for more resources

Many atomically ordered grain boundaries (GBs) couple to applied mechanical stresses and are moved by them, producing shear deformation of the lattice they traverse. This process does not require atomic diffusion and can be implemented at low temperatures by deformation and rotation of structural units. This so-called coupled GB motion occurs by increments and can exhibit dynamics similar to the stick-slip behavior known in atomic friction. We explore possible dynamic regimes of coupled GB motion by two methods. First, we analyze a simple one-dimensional model in which the GB is mimicked by a particle attached to an elastic rod and dragged through a periodic potential. Second, we apply molecular dynamics (MD) with an embedded-atom potential for Al to simulate coupled motion of a particular tilt GB at different temperatures and velocities. The stress-velocity-temperature relationships established by both methods are qualitatively similar and indicate highly nonlinear dynamics at low temperatures and/or large velocities. At high temperatures and/or slow velocities, the character of the GB motion changes from stick slip to driven random walk and the stress-velocity relation becomes approximately linear. The MD simulations also reveal multiple GB jumps due to dynamic correlations at high velocities, and a transition from coupling to sliding at high temperatures.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available