4.6 Article

Strong-coupling phases of frustrated bosons on a two-leg ladder with ring exchange

Journal

PHYSICAL REVIEW B
Volume 78, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.054520

Keywords

-

Ask authors/readers for more resources

Developing a theoretical framework to access the quantum phases of itinerant bosons or fermions in two dimensions that exhibit singular structure along surfaces in momentum space but have no quasiparticle description remains a central challenge in the field of strongly correlated physics. In this paper we propose that distinctive signatures of such two-dimensional (2D) strongly correlated phases will be manifest in quasi-one-dimensional N-leg ladder systems. Characteristic of each parent 2D quantum liquid would be a precise pattern of one-dimensional (1D) gapless modes on the N-leg ladder. These signatures could be potentially exploited to approach the 2D phases from controlled numerical and analytical studies in quasi-one-dimension. As a first step we explore itinerant-boson models with a frustrating ring-exchange interaction on the two-leg ladder, searching for signatures of the recently proposed two-dimensional d-wave-correlated Bose liquid (DBL) phase. A combination of exact diagonalization, density-matrix renormalization-group, variational Monte Carlo, and bosonization analysis of a quasi-1D gauge theory provide compelling evidence for the existence of an unusual strong-coupling phase of bosons on the two-leg ladder, which can be understood as a descendant of the two-dimensional DBL. We suggest several generalizations to quantum spin and electron Hamiltonians on ladders, which could likewise reveal fingerprints of such 2D non-Fermi-liquid phases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available