4.6 Article

Fulde-Ferrell-Larkin-Ovchinnikov pairing in one-dimensional optical lattices

Journal

PHYSICAL REVIEW B
Volume 77, Issue 24, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.245105

Keywords

-

Ask authors/readers for more resources

Spin-polarized attractive Fermi gases in one-dimensional (1D) optical lattices are expected to be remarkably good candidates for the observation of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase. We model these systems with an attractive Hubbard model with population imbalance. By means of the density-matrix renormalization-group method, we compute the pairing correlations as well as the static spin and charge structure factors in the whole range from weak to strong coupling. We demonstrate that pairing correlations exhibit quasi-long-range order and oscillations at the wave number expected from the FFLO theory. However, we also show by numerically computing the mixed spin-charge static structure factor that charge and spin degrees of freedom appear to be coupled already for a small imbalance. We discuss the consequences of this coupling for the observation of the FFLO phase, as well as for the stabilization of the quasi-long-range order into long-range order by coupling many identical 1D systems, such as in quasi-1D optical lattices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available