4.6 Article

Magnetism and d-wave superconductivity on the half-filled square lattice with frustration

Journal

PHYSICAL REVIEW B
Volume 77, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.064427

Keywords

-

Ask authors/readers for more resources

The role of frustration and interaction strength on the half-filled Hubbard model is studied on the square lattice with nearest- and next-nearest-neighbor hoppings t and t(') using the variational cluster approximation (VCA). At half-filling, we find two phases with long-range antiferromagnetic (AF) order: the usual Neel phase, stable at small frustration t(')/t, and the so-called collinear (or superantiferromagnet) phase with ordering wave vector (pi,0) or (0,pi), stable for large frustration. These are separated by a phase with no detectable long-range magnetic order. We also find the d-wave superconducting (SC) phase (d(x)(2)-y(2)), which is favored by frustration if it is not too large. Intriguingly, there is a broad region of coexistence where both AF and SC order parameters have nonzero values. In addition, the physics of the metal-insulator transition in the normal state is analyzed. The results obtained with the help of the VCA method are compared with the large-U expansion of the Hubbard model and known results for the frustrated J(1)-J(2) Heisenberg model. These results are relevant for pressure studies of undoped parents of the high-temperature superconductors: we predict that an insulator to d-wave SC transition may appear under pressure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available