4.6 Article

Magnetoresistance behavior of ferromagnetic shape memory alloy Ni1.75Mn1.25Ga

Journal

PHYSICAL REVIEW B
Volume 77, Issue 22, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.224417

Keywords

-

Ask authors/readers for more resources

A negative-positive-negative switching behavior of magnetoresistance (MR) with temperature is observed in a ferromagnetic shape memory alloy Ni1.75Mn1.25Ga. In the austenitic phase between 300 and 120 K, MR is negative due to s-d scattering. Curiously, below 120 K MR is positive, while at still lower temperatures in the martensitic phase, MR is negative again. The positive MR cannot be explained by Lorentz contribution and is related to a magnetic transition. Evidence for this is obtained from ab initio density-functional theory, a decrease in magnetization and resistivity upturn at 120 K. Theory shows that a ferrimagnetic state with antiferromagnetic alignment between the local magnetic moments of the Mn atoms is the energetically favored ground state. In the martensitic phase, there are two competing factors that govern the MR behavior: a dominant negative trend up to the saturation field due to the decrease in electron scattering at twin and domain boundaries and a weaker positive trend due to the ferrimagnetic nature of the magnetic state. MR exhibits a hysteresis between heating and cooling that is related to the first-order nature of the martensitic phase transition.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available