4.6 Article

Functionalization of carbon-based nanostructures with light transition-metal atoms for hydrogen storage

Journal

PHYSICAL REVIEW B
Volume 77, Issue 8, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.085405

Keywords

-

Ask authors/readers for more resources

In a recent letter [T. Yildirim and S. Ciraci, Phys. Rev. Lett. 94, 175501 (2005)], the unusual hydrogen storage capacity of Ti decorated carbon nanotubes has been revealed. The present paper extends this study further to investigate the hydrogen uptake by light transition-metal atoms decorating various carbon-based nanostructures in different types of geometry and dimensionality, such as carbon linear chain, graphene, and nanotubes. Using first-principles plane-wave method we show that not only outer but also inner surface of a large carbon nanotube can be utilized to bind more transition-metal atoms and hence to increase the storage capacity. We also found that scandium and vanadium atoms adsorbed on a carbon nanotube can bind up to five hydrogen molecules. Similarly, light transition-metal atoms can be adsorbed on both sides of graphene and each adsorbate can hold up to four hydrogen molecules yielding again a high-storage capacity. Interestingly, our results suggest that graphene can be considered as a potential high-capacity H-2 storage medium. We also performed transition state analysis on the possible dimerization of Ti atoms adsorbed on the graphene and single-wall carbon nanotube.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available