4.6 Article

Intrinsic origin of spin echoes in dipolar solids generated by strong π pulses

Journal

PHYSICAL REVIEW B
Volume 77, Issue 21, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.214306

Keywords

-

Ask authors/readers for more resources

In spectroscopy, it is conventional to treat pulses much stronger than the linewidth as delta functions. In NMR, this assumption leads to the prediction that pi pulses do not refocus the dipolar coupling. However, NMR spin echo measurements in dipolar solids defy these conventional expectations when more than one pi pulse is used. Observed effects include a long tail in the CPMG echo train for short delays between pi pulses, an even-odd asymmetry in the echo amplitudes for long delays, an unusual fingerprint pattern for intermediate delays, and a strong sensitivity to pi-pulse phase. Experiments that set limits on possible extrinsic causes for the phenomena are reported. We find that the action of the system's internal Hamiltonian during any real pulse is sufficient to cause the effects. Exact numerical calculations, combined with average Hamiltonian theory, identify terms that are sensitive to parameters such as pulse phase, dipolar coupling, and system size. Visualization of the entire density matrix shows a unique flow of quantum coherence from nonobservable to observable channels when applying repeated pi pulses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available