4.6 Article

Tight-binding molecular dynamics simulations of radiation-induced fragmentation of C60

Journal

PHYSICAL REVIEW B
Volume 77, Issue 7, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.075102

Keywords

-

Ask authors/readers for more resources

The fragmentation of the C-60 fullerene was investigated using tight-binding molecular dynamics simulations based on the parametrization of Papaconstantopoulos [MRS Symposia Proceedings No. 491 (Materials Research Society, Pittsburgh, 1998), p. 221]. Averaged fragment size distributions over random sets of initial configurations were obtained from simulations of radiation-induced fragmentation in the 50-500 eV excitation energy range. The excitation caused by the radiation was simulated simply by ascribing suddenly random velocities to each atom of the fullerene cage. For low excitation energies, the size distributions are peaked for dimers (reflecting a preferential C-2 emission) and a bimodal size dependence characterizes the distributions of the complementary small and large fragments. For high excitation energies, predominantly multifragmentation occurs, but a genuine power-law dependence of small fragments is not yet observable. A phase transition is found for rather low excitation energies (100-120 eV).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available