4.6 Article

First-principles characterization of Ni diffusion kinetics in β-NiAl

Journal

PHYSICAL REVIEW B
Volume 78, Issue 18, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.184105

Keywords

-

Funding

  1. (U.S.) Air Force Office of Scientific Research
  2. Maui High Performance Computing Center and Naval Oceanographic Office and Engineering Research and Development Center Major Shared Resource Centers

Ask authors/readers for more resources

First-principles density functional theory calculations are performed to examine five postulated diffusion mechanisms for Ni in NiAl: next-nearest-neighbor (NNN) jumps, the triple defect mechanism, and three variants of the six-jump cycle. In contrast to most previous theoretical work, which employed empirical interatomic potentials, we provide a more accurate nonempirical description of the mechanisms. For each pathway, we calculate the activation energy and the pre-exponential factor for the diffusion constant. Although our quantum mechanics calculations are performed at 0 K, we show that it is critical to include the effect of temperature on the pre-exponential factor. We predict that the triple defect mechanism and [110] six-jump cycle both are likely contributors to Ni diffusion in NiAl since their activation energies and pre-exponential factors are in very good agreement with experimental data. Although the activation energy and pre-exponential factor of NNN jumps agree well with experiment, experimental evidence suggests that this is not a dominant contributor to Ni diffusion. Lastly, the activation energies of the [100] bent and straight six-jump cycles are 1 eV higher than the experimental value, allowing us to exclude both [100] cycle mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available