4.6 Article

Quantum phase slips in a confined geometry

Journal

PHYSICAL REVIEW B
Volume 77, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.014505

Keywords

-

Ask authors/readers for more resources

We consider tunneling of vortices across a superconducting film that is both narrow and short (and connected to bulk superconducting leads at the ends). We find that in the superconducting state the resistance, at low values of the temperature (T) and current, does not follow the power-law dependence on T characteristic of longer samples but is exponential in 1/T. The coefficient of 1/T in the exponent depends on the length or, equivalently, the total normal-state resistance of the sample. These conclusions persist in the one-dimensional limit, which is similar to the problem of quantum phase slips in an ultranarrow short wire.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available