4.6 Article

Double-gap superconducting proximity effect in armchair carbon nanotubes

Journal

PHYSICAL REVIEW B
Volume 77, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.041406

Keywords

-

Ask authors/readers for more resources

We theoretically explore the possibility of a superconducting proximity effect in single-walled metallic carbon nanotubes due to the presence of a superconducting substrate. An unconventional double-gap situation can arise in the two bands for nanotubes of large radius wherein the tunneling is (almost) symmetric in the two sublattices. In such a case, a proximity effect can take place in the symmetric band below a critical experimentally accessible Coulomb interaction strength in the nanotube. Furthermore, due to interactions in the nanotube, the appearance of a BCS gap in this band stabilizes superconductivity in the other band at lower temperatures. We also discuss the scenario of highly asymmetric tunneling and show that this case too supports double-gap superconductivity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available