4.6 Article

Sufficient condition for the mode mismatch of single photons for scalability of the boson-sampling computer

Journal

PHYSICAL REVIEW A
Volume 89, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.89.022333

Keywords

-

Funding

  1. CNPq of Brazil

Ask authors/readers for more resources

The boson sampler proposed by Aaronson and Arkhipov is a nonuniversal quantum computer, which can serve as evidence against the extended Church-Turing thesis. It samples the probability distribution at the output of a linear unitary optical network with indistinguishable single photons at the input. Four experimental groups have already tested their small-scale prototypes with up to four photons. A boson sampler with a few dozens of single photons is believed to be hard to simulate on a classical computer. For scalability of a realistic boson sampler with current technology it is necessary to know the effect of the photon mode mismatch on its operation. Here a nondeterministic model of the boson sampler is analyzed, which employs partially indistinguishable single photons emitted by identical sources. A sufficient condition on the average mutual fidelity < F > of the single photons is found, which guarantees that the realistic boson sampler outperforms the classical computer. Moreover, the boson-sampler computer with partially indistinguishable single photons is scalable and has more power than classical computers when the single-photon mode mismatch 1 - < F > scales as O(N-3/2) with the total number of photons N.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available