4.6 Article

Transient-gain photoionization x-ray laser

Journal

PHYSICAL REVIEW A
Volume 90, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.90.063828

Keywords

-

Ask authors/readers for more resources

We present a generalized theory based on one-dimensionalMaxwell-Bloch equations to study the amplification process of an inner-shell photoionization-pumped atomic x-ray laser. Focusing an x-ray free-electron laser beam in an elongated neon-gas target results in a strong exponential amplification of K alpha fluorescence, as recently demonstrated [N. Rohringer et al., Nature (London) 481, 488 (2012); C. Weninger et al., Phys. Rev. Lett. 111, 233902 (2013)]. Here, we present an in-depth theoretical study of the amplification process that goes beyond the previous theory based on a rate-equation approach. We study the evolution of the pulse characteristics during the amplification process for transform-limited Gaussian and broadband self-amplified spontaneous-emission pump pulses. We discuss the impact of the gain-dependent group velocity on the emitted x-ray radiation and the resulting gain-guiding effects. A thorough analysis of the spectral and temporal properties of the emitted radiation is presented, including higher-order field-correlation functions, to characterize the ensemble of emitted x-ray pulses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available