4.6 Article

Higher-order equilibria of temporal soliton molecules in dispersion-managed fibers

Journal

PHYSICAL REVIEW A
Volume 88, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.88.063843

Keywords

-

Funding

  1. Deutsche Forschungsgemeinschaft

Ask authors/readers for more resources

Bound states of two or three solitons in dispersion-managed fibers (soliton molecules) were experimentally demonstrated recently. We investigate with a modified perturbation analysis whether the binding mechanism creates a unique stable equilibrium of the relative positions of the solitons in the molecule. Indeed, we find a multitude of equilibrium states, alternatingly stable and unstable. This holds for either case: nearest neighbor solitons having the same or the opposite phase. The number of equilibria are limited by the level of the radiation background. The state with the smallest separation and the highest binding energy (ground state) always occurs for opposite-phase pulses; the lowest-order state for in-phase pulses is always unstable. Stable long-chain molecules can be built with a mixture of different nearest-neighbor equilibrium separations. Our results agree with our numerical simulations and experimental results, and connect well with certain results in the literature.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available