4.6 Article

Simulation of rare events in quantum error correction

Journal

PHYSICAL REVIEW A
Volume 88, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.88.062308

Keywords

-

Funding

  1. IARPA QCS program [D11PC20167]
  2. DARPA QuEST program [HR0011-09-C-0047]

Ask authors/readers for more resources

We consider the problem of calculating the logical error probability for a stabilizer quantum code subject to random Pauli errors. To access the regime of large code distances where logical errors are extremely unlikely we adopt the splitting method widely used in Monte Carlo simulations of rare events and Bennett's acceptance ratio method for estimating the free energy difference between two canonical ensembles. To illustrate the power of these methods in the context of error correction, we calculate the logical error probability P-L for the two-dimensional surface code on a square lattice with a pair of holes for all code distances d <= 20 and all error rates p below the fault-tolerance threshold. Our numerical results confirm the expected exponential decay P-L similar to exp [-alpha(p)d] and provide a simple fitting formula for the decay rate alpha(p). Both noiseless and noisy syndrome readout circuits are considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available