4.6 Article

Production and manipulation of wave packets from ultracold atoms in an optical lattice

Journal

PHYSICAL REVIEW A
Volume 88, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.88.023620

Keywords

-

Funding

  1. Danish National Research Foundation
  2. Lundbeck Foundation
  3. Danish Council for Independent Research

Ask authors/readers for more resources

Within the combined potential of an optical lattice and a harmonic magnetic trap, it is possible to form matter wave packets by intensity modulation of the lattice. An analysis of the production and motion of these wave packets provides a detailed understanding of the dynamical evolution of the system. The modulation technique also allows for a controllable transfer (deexcitation) of atoms from such wave packets to a state bound by the lattice. Thus, it acts as a beam splitter for matter waves that can selectively address different bands, enabling the preparation of atoms in localized states. The combination of wave packet creation and deexcitation closely resembles the well-known method of pump-probe spectroscopy. Here, we use the deexcitation for spectroscopy of the anharmonicity of the combined potential. Finally, we demonstrate that lattice modulation can be used to excite matter wave packets to even higher momenta, producing fast wave packets with potential applications in precision measurements.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available