4.6 Article

Synthetic gauge field with highly magnetic lanthanide atoms

Journal

PHYSICAL REVIEW A
Volume 88, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.88.011601

Keywords

-

Funding

  1. NSFC [11104158, 11174176, 11004118]
  2. Tsinghua University Initiative Scientific Research Program
  3. NSF
  4. AFOSR
  5. NKBRSFC [2011CB921500]
  6. DARPA under Army Research Office [W911NF-07-1-0464, W911NF0710576]
  7. Tsinghua University through the Thousand People Plan
  8. Division Of Materials Research
  9. Direct For Mathematical & Physical Scien [0907366] Funding Source: National Science Foundation

Ask authors/readers for more resources

We present a scheme for generating a synthetic magnetic field and spin-orbit coupling via Raman coupling in highly magnetic lanthanide atoms such as dysprosium. Employing these atoms offers several advantages for realizing strongly correlated states and exotic spinor phases. The large spin and narrow optical transitions of these atoms allow the generation of synthetic magnetic fields that are an order of magnitude larger than those in the alkali metals, but with considerable reduction of the heating rate for equal Raman coupling. The effective Hamiltonian of these systems differs from that of the alkali metals' by an additional nematic coupling term, which leads to a phase transition in the dressed states as detuning varies. For high-spin condensates, spin-orbit coupling leads to a spatially periodic structure, which is described in a Majorana representation by a set of points moving periodically on a unit sphere. We name this a Majorana spinor helix, in analogy to the persistent spin-1/2 helix observed in electronic systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available