4.6 Article

Ultimate limits to quantum metrology and the meaning of the Heisenberg limit

Journal

PHYSICAL REVIEW A
Volume 85, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.042112

Keywords

-

Funding

  1. White Rose Foundation
  2. ARC Centre of Excellence [CE110001027]

Ask authors/readers for more resources

For the last 20 years, the question of what are the fundamental capabilities of quantum precision measurements has sparked a lively debate throughout the scientific community. Typically, the ultimate limits in quantum metrology are associated with the notion of the Heisenberg limit expressed in terms of the physical resources used in the measurement procedure. Over the years, a variety of different physical resources were introduced, leading to a confusion about the meaning of the Heisenberg limit. Here, we review the mainstream definitions of the relevant resources and introduce the universal resource count, that is, the expectation value of the generator (above its ground state) of translations in the parameter we wish to estimate, that applies to all measurement strategies. This leads to the ultimate formulation of the Heisenberg limit for quantum metrology. We prove that this limit holds for the generators of translations with an upper-bounded spectrum.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available