4.6 Article

Nonlinear Compton scattering of ultrashort intense laser pulses

Journal

PHYSICAL REVIEW A
Volume 83, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.022101

Keywords

-

Ask authors/readers for more resources

The scattering of temporally shaped intense laser pulses off electrons is discussed by means of manifestly covariant quantum electrodynamics. We employ a framework based on Volkov states with a time-dependent laser envelope in light-cone coordinates within the Furry picture. An expression for the cross section is constructed unambiguously in respect of the pulse length. A broad distribution of scattered photons with a rich pattern of subpeaks like that obtained in Thomson scattering is found. These broad peaks may overlap at sufficiently high laser intensity, rendering inappropriate the notion of individual harmonics. The limit of monochromatic plane waves as well as the classical limit of Thomson scattering are discussed. As a main result, a scaling law is presented connecting the Thomson limit with the general result for arbitrary kinematics. In the overlapping regions of the spectral density, the classical and quantum calculations give different results, even in the Thomson limit. Thus, a phase-space region is identified where the differential photon distribution is strongly modified by quantum effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available