4.6 Article

Nonequilibrium phase diagram of a driven and dissipative many-body system

Journal

PHYSICAL REVIEW A
Volume 83, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.013611

Keywords

-

Funding

  1. Austrian Science Fund (FWF) [SFB F40 FOQUS]

Ask authors/readers for more resources

We study the nonequilibrium dynamics of a many-body bosonic system on a lattice, subject to driving and dissipation. The time evolution is described by a master equation, which we treat within a generalized Gutzwiller mean field approximation for density matrices. The dissipative processes are engineered such that the system, in the absence of interaction between the bosons, is driven into a homogeneous steady state with off-diagonal long-range order. We investigate how the coherent interaction affects the properties of the steady state of the system qualitatively and derive a nonequilibrium phase diagram featuring a phase transition into a steady state without long-range order. The phase diagram also exhibits an extended domain where an instability of the homogeneous steady state gives rise to a persistent density pattern with spontaneously broken translational symmetry. In the limit of low particle density, we provide a precise analytical description of the time evolution during the instability. Moreover, we investigate the transient following a quantum quench of the dissipative processes and we elucidate the prominent role played by collective topological variables in this regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available