4.6 Article

Thermodynamics of the three-dimensional Hubbard model: Implications for cooling cold atomic gases in optical lattices

Journal

PHYSICAL REVIEW A
Volume 83, Issue 2, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.023606

Keywords

-

Funding

  1. Agence Nationale de la Recherche
  2. DARPA-OLE
  3. Triangle de la Physique
  4. Fonds Quebecois de Recherche sur la Nature et les Technologies

Ask authors/readers for more resources

We present a comprehensive study of the thermodynamic properties of the three-dimensional fermionic Hubbard model, with application to cold fermionic atoms subject to an optical lattice and a trapping potential. Our study is focused on the temperature range of current experimental interest. We employ two theoretical methods-dynamical mean-field theory and high-temperature series-and perform comparative benchmarks to delimit their respective range of validity. Special attention is devoted to understand the implications that thermodynamic properties of this system have on cooling. Considering the distribution function of local occupancies in the inhomogeneous lattice, we show that, under adiabatic evolution, the variation of any observable (e. g., temperature) can be conveniently disentangled into two distinct contributions. The first contribution is due to the redistribution of atoms in the trap during the evolution, while the second one comes from the intrinsic change of the observable. Finally, we provide a simplified picture of a recently proposed cooling procedure, based on spatial entropy separation, by applying this method to an idealized model.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available