4.6 Article

Multimer formation in one-dimensional two-component gases and trimer phase in the asymmetric attractive Hubbard model

Journal

PHYSICAL REVIEW A
Volume 83, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.053618

Keywords

-

Funding

  1. Institut Francilien de Recherche sur les Atomes Froids (IFRAF)
  2. ANR [08-BLAN-0165-01]

Ask authors/readers for more resources

We consider two-component one-dimensional quantum gases at special imbalanced commensurabilities which lead to the formation of multimer (multiparticle bound-states) as the dominant order parameter. Luttinger liquid theory supports a mode-locking mechanism in which mass (or velocity) asymmetry is identified as the key ingredient to stabilize such states. While the scenario is valid both in the continuum and on a lattice, the effects of umklapp terms relevant for densities commensurate with the lattice spacing are also mentioned. These ideas are illustrated and confronted with the physics of the asymmetric (mass-imbalanced) fermionic Hubbard model with attractive interactions and densities such that a trimer phase can be stabilized. Phase diagrams are computed using density-matrix renormalization group techniques, showing the important role of the total density in achieving the latter phase. The effective physics of the trimer gas is studied as well. Last, the effect of a parabolic confinement and the emergence of a crystal phase of trimers are briefly addressed. This model has connections with the physics of imbalanced two-component fermionic gases and Bose-Fermi mixtures as the latter gives a good phenomenological description of the numerics in the strong-coupling regime.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available