4.6 Article

Topological states in two-dimensional optical lattices

Journal

PHYSICAL REVIEW A
Volume 82, Issue 1, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.82.013608

Keywords

-

Funding

  1. US-ARO
  2. JQI-NSF-PFC

Ask authors/readers for more resources

We present a general analysis of two-dimensional optical lattice models that give rise to topologically nontrivial insulating states. We identify the main ingredients of the lattice models that are responsible for the nontrivial topological character and argue that such states can be realized within a large family of realistic optical lattice Hamiltonians with cold atoms. We focus our quantitative analysis on the properties of topological states with broken time-reversal symmetry specific to cold-atom settings. In particular, we analyze finite-size effects, multiorbital phenomena that give rise to a variety of distinct topological states and transitions between them, the dependence on the trap geometry, and, most importantly, the behavior of the edge states for different types of soft and hard boundaries. Furthermore, we demonstrate the possibility of experimentally detecting the topological states through light Bragg scattering of the edge and bulk states.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available