4.6 Article

Choice of measurement sets in qubit tomography

Journal

PHYSICAL REVIEW A
Volume 78, Issue 5, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.78.052122

Keywords

-

Funding

  1. Australian Research Council

Ask authors/readers for more resources

Optimal generalized measurements for state estimation are well understood. However, practical quantum state tomography is typically performed using a fixed set of projective measurements, and the question of how to choose these measurements has been largely unexplored in the literature. In this work, we develop theoretical asymptotic bounds for the average fidelity of pure qubit tomography using measurement sets whose axes correspond to faces of Platonic solids. We also present comprehensive simulations of maximum likelihood tomography for mixed qubit states using the Platonic solid measurements. We show that overcomplete measurement sets can be used to improve the accuracy of tomographic reconstructions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available