4.6 Article

What atomic properties of metal oxide control the reaction threshold of solid elemental fuels?

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 20, Issue 42, Pages 26885-26891

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c8cp01671b

Keywords

-

Funding

  1. Army Research Office
  2. Defense Threat Reduction Agency

Ask authors/readers for more resources

The redox reaction between fuel (metal, metalloid, etc.) and metal oxide is ubiquitous. On the other hand simple thermodynamic considerations do not seem to yield much insight into what makes for a vigorous oxidizer. In this study, two different systematically doped metal oxide systems: perovskites (9 compounds) and delta-Bi2O3 (12 compounds) were synthesized in a manner such that for each system the crystal structure and morphology were maintained. Four fuels (Al, B, Ta, C) with different physical properties, covering almost all fuel types, were included in this study. The initiation temperature and oxygen release temperature was measured by fast heating (>10(5) K s(-1)) temperature-jump/time-of-flight mass spectrometry coupled with high-speed imaging. These results were then correlated with the average metal-oxygen bond energy in the oxidizer, and overall metal-oxygen electronegativity. In general, within each systematic metal oxide, we found linear relationships between average bond energy and electronegativity of the metal oxides with initiation temperature for all four fuels, despite their very different physical/chemical properties. These results indicate that intrinsic atomic properties of metal oxide control fuel-metal oxide reaction initiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available