4.6 Article

A ZnO-graphene hybrid with remarkably enhanced lithium storage capability

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 47, Pages 25846-25853

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp03964e

Keywords

-

Funding

  1. National Natural Science Foundation of China [21471016, 21271023]
  2. 111 Project [B07012]

Ask authors/readers for more resources

In this work, a ZnO-graphene (ZnO-GN) hybrid is successfully synthesized from graphene oxide (GO) and zinc hydroxide [Zn(OH)(2)] by a facile freeze drying treatment and subsequent heat treatment method. The uniform ZnO nanoparticles (NPs) with a diameter less than 10 nm were uniformly anchored on a nitrogen-doped conductive GN matrix to form a ZnO-GN hybrid. Moreover, various ZnO-GN hybrids with different ZnO loading amounts are fabricated by changing the dosage of Zn(OH)(2). When used as an anode material for lithium ion batteries (LIBs), the hybrid showed unprecedentedly enhanced cycling stability and rate performance. More remarkably, the optimized ZnO-GN hybrid achieved an ultrahigh reversible capacity of 900 mA h g(-1), close to the theoretical capacity (978 mA h g(-1)) of ZnO after 100 cycles at a current density of 100 mA g(-1), which so far has been proved to be the best result among all ZnO-GN-based electrode materials. As a result, we attributed the excellent performance to the incorporation of the conductive nitrogen-doped GN matrix and the synergetic effect between GN sheets and ZnO NPs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available