4.6 Article

Controlling Na diffusion by rational design of Si-based layered architectures

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 9, Pages 4260-4267

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54320j

Keywords

-

Ask authors/readers for more resources

By means of density functional theory, we systematically investigate the insertion and diffusion of Na and Li in layered Si materials (polysilane and H-passivated silicene), in comparison with bulk Si. It is found that Na binding and mobility can be significantly facilitated in layered Si structures. In contrast to the Si bulk, where Na insertion is energetically unfavorable, Na storage can be achieved in polysilane and silicene. The energy barrier for Na diffusion is reduced from 1.06 eV in the Si bulk to 0.41 eV in polysilane. The improvements in binding energetics and in the activation energy for Na diffusion are attributed to the large surface area and available free volume for the large Na cation. Based on these results, we suggest that polysilane may be a promising anode material for Na-ion and Li-ion batteries with high charge-discharge rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available