4.6 Article

Syntheses of asymmetric zinc phthalocyanines as sensitizer of Pt-loaded graphitic carbon nitride for efficient visible/near-IR-light-driven H-2 production

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 9, Pages 4106-4114

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54316a

Keywords

-

Funding

  1. Natural Science Foundation of China [21271146, 21271144, 20973128, 20871096]
  2. Program for New Century Excellent Talents in University of China [NCET-07-0637]
  3. Beijing National Laboratory for Molecular Sciences (BNLMS)

Ask authors/readers for more resources

Zinc phthalocyanine (ZnPc) derivatives with asymmetric (Zn-tri-PcNc-2) or symmetric (Zn-tetrad-Nc) structure, which possess wide spectral response in the visible/near-IR light region, are synthesized and utilized as a sensitizer of graphitic carbon nitride (g-C3N4) with 0.5 wt% Pt-loading for photocatalytic H-2 production. The experimental results indicate that Zn-tri-PcNc-2 exhibits much better photosensitization on g-C3N4 than Zn-tetrad-Nc under visible/near-IR light although Zn-tetrad-Nc possesses wider and stronger optical absorption property than Zn-tri-PcNc-2. Zn-tri-PcNc-2-Pt/g-C3N4 exhibits an average H-2 production rate of 132 mu mol h(-1), which is much better than that (26.1 mu mol h(-1)) of Zn-tetrad-Nc-Pt/g-C3N4 under visible-light (lambda >= 500 nm) irradiation. Moreover, Zn-tri-PcNc-2-Pt/g-C3N4 also shows much higher apparent quantum yield (AQY) than Zn-tetrad-Nc-Pt/g-C3N4 under red/near-IR light irradiation. Especially, Zn-tri-PcNc-2-Pt/g-C3N4 exhibits impressively higher AQY (1.07%) than that (0.22%) of the Zn-tetrad-Nc-Pt/g-C3N4 under 700 nm monochromatic light irradiation. The much better photoactivity of Zn-tri-PcNc-2-Pt/g-C3N4 than Zn-tetrad-Nc-Pt/g-C3N4 is caused by the asymmetric structure of Zn-tri-PcNc-2, which can result in the electronic orbital directionality of its excited state, much faster photogenerated electron transfer to g-C3N4, and higher red/near-IR light utilization efficiency as compared to Zn-tetrad-Nc-Pt/g-C3N4. The present results provide an important insight into the effects of molecular structure and optical absorption property of phthalocyanine derivatives on the photoactivity of the dye-sensitized semiconductor, and also guide us to further improve the solar energy conversion efficiency by optimizing the molecular structure and effectively utilizing the visible/near-IR light of sunlight.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available