4.6 Article

Rapid synthesis of nitrogen-doped graphene for a lithium ion battery anode with excellent rate performance and super-long cyclic stability

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 3, Pages 1060-1066

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54494j

Keywords

-

Funding

  1. NSF [DMR 1151028]
  2. State Scholarship Fund of the China Scholarship Council [2011608043]
  3. Fundamental Research Funds for the Central Universities [N100702001]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [1151028] Funding Source: National Science Foundation

Ask authors/readers for more resources

Chemical doping of nitrogen into graphene can significantly enhance the reversible capacity and cyclic stability of the graphene-based lithium ion battery (LIB) anodes, and first principles calculations based on density functional theory suggested that pyridinic-N shows stronger binding with Li with reduced energy barrier for Li diffusion and thus is more effective for Li storage than pyrrolic and graphitic-N. Here, we report a novel and rapid (B30 seconds) process to fabricate nitrogen-doped graphene (NGr) by simultaneous thermal reduction of graphene oxide with ammonium hydroxide. The porous NGr with dominant pyridinic N atoms displays greatly enhanced reversible capacities, rate performance and exceptional cyclic stability as compared with pristine graphene. The reversible discharge capacity of the NGr electrode cycled between 0.01-3 V can reach 453 mA h g(-1) after 550 cycles at a charge rate of 2 A g(-1) (B5.4 C), and 180 mA h g(-1) after 2000 cycles at a high charge rate of 10 A g(-1) (B27 C) without any capacity fading. When charged within 0.01-1.5 V, the NGr anode still exhibits high reversible capacities of 224 mA h g(-1) and 169 mA h g(-1) after 700 cycles and 800 cycles at a charge rate of 1 A g(-1) and 5 A g(-1), respectively. Ex situ X-ray photoelectron spectroscopy (XPS) analysis of the NGr electrode upon lithiation and delithiation indicated that the pyridinic-N dominates the capacity enhancement at 3 V, while the pyrrolic-N contributes primarily to Li ion storage below 1.5 V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available