4.6 Article

Improved efficiency of bulk heterojunction hybrid solar cells by utilizing CdSe quantum dot-graphene nanocomposites

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 24, Pages 12251-12260

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp01566e

Keywords

-

Funding

  1. German Science Foundation (DFG) Graduate School Micro Energy Harvesting'' [GRK1322]
  2. Vietnam International Education Development (VIED) program as well as the EWE-Nachwuchsgruppe Dunnschicht-Photovoltaik,'' - EWE AG, Oldenburg

Ask authors/readers for more resources

We present a significant efficiency enhancement of hybrid bulk heterojunction solar cells by utilizing CdSe quantum dots attached to reduced graphene oxide (rGO) as the electron accepting phase, blended with the PCPDTBT polymer. The quantum dot attachment to rGO was achieved following a self-assembly approach, recently developed, using thiolated reduced graphene oxide (TrGO) to form a TrGO-CdSe nanocomposite. Therefore, we are able to obtain TrGO-CdSe quantum dot/PCPDTBT bulk-heterojunction hybrid solar cells with power conversion efficiencies of up to 4.2%, compared with up to 3% for CdSe quantum dot/PCPDTBT devices. The improvement is mainly due to an increase of the open-circuit voltage from 0.55 V to 0.72 V. We found evidence for a significant change in the heterojunction donor-acceptor blend nanomorphology, observable by a more vertical alignment of the TrGO-quantum dot nanocomposites in the z-direction and a different nanophase separation in the x-y direction compared to the quantum dot only containing device. Moreover, an improved charge extraction and trap state reduction were observed for TrGO containing hybrid solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available