4.6 Article

Micellar drug nanocarriers and biomembranes: how do they interact?

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 11, Pages 5093-5105

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54242d

Keywords

-

Funding

  1. DFG [RO 3571/3-1]
  2. MIUR

Ask authors/readers for more resources

Pluronic based formulations are among the most successful nanomedicines and block-copolymer micelles including drugs that are undergoing phase I/II studies as anticancer agents. Using coarse-grained models, molecular dynamics simulations of large-scale systems, modeling Pluronic micelles interacting with DPPC lipid bilayers, on the mu s timescale have been performed. Simulations show, in agreement with experiments, the release of Pluronic chains from the micelle to the bilayer. This release changes the size of the micelle. Moreover, the presence of drug molecules inside the core of the micelle has a strong influence on this process. The picture emerging from the simulations is that the micelle stability is a result of an interplay of drug-micelle core and block-copolymer-bilayer interactions. The equilibrium size of the drug vector shows a strong dependency on the hydrophobicity of the drug molecules embedded in the core of the micelle. In particular, the radius of the micelle shows an abrupt increase in a very narrow range of drug molecule hydrophobicity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available