4.6 Article

Electrocatalytic activity of Pt subnano/nanoclusters stabilized by pristine graphene nanosheets

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 39, Pages 21609-21614

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp03048f

Keywords

-

Funding

  1. Fundamental Research Funds for the Central Universities [ZB20140003]

Ask authors/readers for more resources

Downsizing the Pt particle to the atomic level in the electro-catalysts is highly desirable to enhance its utilization efficiency in fuel cells. In this study, Pt subnano/nanoclusters were stabilized by the pristine graphene nanosheets (GNSs) derived from chemical vapor deposition and the resulting Pt/GNS hybrids were examined as catalysts for electro-oxidation of alcohols (methanol, ethanol, ethylene glycol and glycerol). In spite of the strong hydrophobic surface, the GNS was proved to be a promising catalyst support because the edges and defects in the GNS could effectively anchor and stabilize the Pt subnano/nanoclusters. The Pt/GNS catalyst showed an extremely high electrochemical active surface area and superior catalytic activity for alcohol oxidation compared with the commercial Pt/carbon black catalyst. The enhanced catalytic performance was attributed to the presence of the discrete Pt subnano/nanoclusters as well as the modulation of the electronic properties of Pt nanoparticles through the chemical interaction of Pt atoms with the edges and defects of the GNS support.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available