4.6 Article

Noble gas encapsulation: clathrate hydrates and their HF doped analogues

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 33, Pages 17943-17954

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp02062f

Keywords

-

Funding

  1. UGC, New Delhi
  2. DST, New Delhi

Ask authors/readers for more resources

The significance of clathrate hydrates lies in their ability to encapsulate a vast range of inert gases. Although the natural abundance of a few noble gases (Kr and Xe) is poor their hydrates are generally abundant. It has already been reported that HF doping enhances the stability of hydrogen hydrates and methane hydrates, which prompted us to perform a model study on helium, neon and argon hydrates with their HF doped analogues. For this purpose 5(12), 5(12)6(8) and their HF doped analogues are taken as the model clathrate hydrates, which are among the building blocks of sI, sII and sH types of clathrate hydrate crystals. We use the dispersion corrected and gradient corrected hybrid density functional theory for the calculation of thermodynamic parameters as well as conceptual density functional theory based reactivity descriptors. The method of the ab initio molecular dynamics (AIMD) simulation is used through atom centered density matrix propagation (ADMP) techniques to envisage the structural behaviour of different noble gas hydrates on a 500 fs timescale. Electron density analysis is carried out to understand the nature of Ng-OH2, Ng-FH and Ng-Ng interactions. The current results noticeably demonstrate that the noble gas (He. Ne, and Ar) encapsulation ability of 5(12), 5(12)6(8) and their HF doped analogues is thermodynamically favourable.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available