4.6 Article

The binding mechanisms of intrinsically disordered proteins

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 14, Pages 6323-6331

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54226b

Keywords

-

Funding

  1. Swedish Research Council
  2. Human Frontiers Science Programme
  3. Magnus Bergvall Foundation
  4. Italian Ministry of University and Research (PNR-CNR Aging Program)

Ask authors/readers for more resources

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions (IDRs) of proteins are very common and instrumental for cellular signaling. Recently, a number of studies have investigated the kinetic binding mechanisms of IDPs and IDRs. These results allow us to draw conclusions about the energy landscape for the coupled binding and folding of disordered proteins. The association rate constants of IDPs cover a wide range (10(5)-10(9) M-1 s(-1)) and are largely governed by long-range charge-charge interactions, similarly to interactions between well-folded proteins. Off-rate constants also differ significantly among IDPs (with half-lives of up to several minutes) but are usually around 0.1-1000 s(-1), allowing for rapid dissociation of complexes. Likewise, affinities span from pM to mu M suggesting that the low-affinity high-specificity concept for IDPs is not straightforward. Overall, it appears that binding precedes global folding although secondary structure elements such as helices may form before the protein-protein interaction. Short IDPs bind in apparent two-state reactions whereas larger IDPs often display complex multi-step binding reactions. While the two extreme cases of two-step binding (conformational selection and induced fit) or their combination into a square mechanism is an attractive model in theory, it is too simplistic in practice. Experiment and simulation suggest a more complex energy landscape in which IDPs bind targets through a combination of conformational selection before binding (e. g., secondary structure formation) and induced fit after binding (global folding and formation of short-range intermolecular interactions).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available