4.6 Article

On the lithiation reaction of niobium oxide: structural and electronic properties of Li1.714Nb2O5

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 4, Pages 1385-1392

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp54215g

Keywords

-

Ask authors/readers for more resources

Monoclinic alpha-Nb2O5 was chemically lithiated by reaction with n-butyllithium, mimicking the product of electrochemical discharge of a niobium oxide cathode vs. a Li anode. The compound was investigated by neutron powder diffraction (D2B equipment at ILL, France) and its structure was Rietveld refined in space group P2 to wR(p) = 0.045, locating the Li atoms inserted in the alpha-Nb2O5 framework. The ensuing chemical formula is Li12/7Nb2O5. Some Li atoms are more strongly bonded (five coordinated O atoms), some are less strongly bonded (coordination number = 4). Starting from the experimental structure, first-principles periodic DFT calculations based on the hybrid B3LYP functional were performed. The electrochemical voltage of Li insertion was computed to be 1.67 V, fully consistent with the experimental 1.60 V plateau vs. capacity. The analysis of the electron band structure shows that lithiation changes the insulating oxide into a semi-metal; some of the extra electrons inserted with lithium become spin-polarized and give the material weak ferromagnetic properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available