4.6 Article

Thermal boundary conductance between Al films and GaN nanowires investigated with molecular dynamics

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 16, Issue 20, Pages 9403-9410

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp00261j

Keywords

-

Funding

  1. Office of Naval Research Young Investigator Program [N00014-3-0528]
  2. Commonwealth Research Commercialization Fund of Virginia
  3. U.S. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

GaN nanowires are being pursued for optoelectronic and high-power applications. In either use, increases in operating temperature reduce both performance and reliability making it imperative to minimize thermal resistances. Since interfaces significantly influence the thermal response of nanosystems, the thermal boundary resistance between GaN nanowires and metal contacts has major significance. In response, we have performed systematic molecular dynamics simulations to study the thermal boundary conductance between GaN nanowires and Al films as a function of nanowire dimensions, packing density, and the depth the nanowire is embedded into the metal contact. At low packing densities, the apparent Kapitza conductance between GaN nanowires and an aluminum film is shown to be larger than when contact is made between films of these same materials. This enhancement decreases toward the film-film limit, however, as the packing density increases. For densely packed nanowires, maximizing the Kapitza conductance can be achieved by embedding the nanowires into the films, as the conductance is found to be proportional to the total contact area.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available