4.6 Article

Poly(propylene imine) dendrimer caps on mesoporous silica nanoparticles for redox-responsive release: smaller is better

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 15, Issue 26, Pages 10740-10748

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp44614j

Keywords

-

Funding

  1. Slovenian Research Agency
  2. Slovene human resources development and scholarship fund

Ask authors/readers for more resources

To elucidate the importance of the size of capping agents in stimulus-induced release systems from mesoporous silica nanoparticles (MSNs), the effectiveness of poly(propylene imine) dendrimers in controlling the model drug release was studied. MCM-41-type MSNs were synthesized and characterized. Fluorescent compounds (fluorescein disodium salt and carboxyfluorescein) were loaded in the porous structure of the MSNs and entrapped in the silica matrix with the dendrimers of generations I through V by anchoring dendrimers on the MSN surface through disulfide bonds. Stimulus-induced release of the cargo was studied in the presence of dithiothreitol (DTT). Dendrimers of generations I and II were found to be more effective in model drug retention and subsequent release than higher generations. Moreover, MSNs modified with larger amounts of dendrimers lowered the cargo release in the presence of DTT. These findings are of importance for optimizing drug delivery systems based on responsive MSNs as they enable tuning of the amount of the released cargo by choosing the capping agent of appropriate size.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available