4.6 Article

What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution?

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 15, Issue 9, Pages 3027-3046

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp42895d

Keywords

-

Funding

  1. University of Padova [CPDA114097/11]

Ask authors/readers for more resources

Laser ablation synthesis in liquid solution (LASiS) is a green technique that gives access to the preparation of a library of nanomaterials. Bare noble metal spherical particles, multiphase core-shell oxides, metal-semiconductor heterostructures, layered organometallic compounds and other complex nanostructures can be obtained with the same experimental set up, just by varying a few synthetic parameters. How to govern such versatility is one of the current challenges of LASiS and requires a thorough understanding of the physical and chemical processes involved in the synthesis. In this perspective, the fundamental mechanisms of laser ablation in liquids are summarized, organized according to their temporal sequence and correlated with relevant examples taken from the library of nanomaterials disclosed by LASiS, in order to show how synthesis parameters influence the composition and the structure of products. The resulting framework suggests that, to date, much attention has been devoted to the physical aspects of laser-matter interaction and to the characterization of the final products of the synthesis. Conversely, the clarification of chemical processes active during LASiS deserves more research efforts and requires the synergy among multiple investigation techniques.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available