4.6 Article

Wrinkled-graphene enriched MoO3 nanobelts with increased conductivity and reduced stress for enhanced electrochemical performance

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 15, Issue 40, Pages 17165-17170

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp53267d

Keywords

-

Funding

  1. National Basic Research Program of China [2013CB934103, 2012CB933003]
  2. National Natural Science Foundation of China [51272197, 51072153]
  3. Program for New Century Excellent Talents in University [NCET-10-0661]
  4. International ST Cooperation [2013DFA50840]
  5. Independent Innovation Research Fund in WHUT [2012-II-001, 2013-ZD-7, 2013-VII-028]

Ask authors/readers for more resources

MoO3 has long suffered from poor conductivity and cyclability, which limit its high rate performance and ultralong cycling ability. Increasing the electronic conductivity with electron pathways of cathode materials can effectively enhance the lithium storage properties with stable cyclability and rate capability theoretically. Here the MoO3-reduced graphene oxide (rGO) hybrid nanobelts were designed and prepared and were tested as cathode materials for lithium batteries. It is demonstrated that the rGO is wrinkled and twisted around MoO3 nanobelts after reacting under high temperature and pressure conditions. The unique morphology of rGO, which has continuous electron pathways and stress buffering effects, endows the MoO3-rGO hybrid nanobelts with significantly increased rate capability and cycling ability. Meanwhile, it is demonstrated that MoO3-rGO hybrid nanobelts are promising cathode materials for use in rechargeable lithium batteries and our synthesis strategy is also versatile for exploiting advanced materials for Li-ion batteries.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available