4.6 Article

Systematic exploration of the mechanism of chemical reactions: the global reaction route mapping (GRRM) strategy using the ADDF and AFIR methods

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 15, Issue 11, Pages 3683-3701

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3cp44063j

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [23685004, 23655021, 24245005]
  2. US AFOSR [FA9550-10-1-0304]
  3. Grants-in-Aid for Scientific Research [23685004, 23655021] Funding Source: KAKEN

Ask authors/readers for more resources

Global reaction route mapping (GRRM), a fully-automated search for all important reaction pathways relevant to a given purpose, on the basis of quantum chemical calculations enables systematic elucidation of complex chemical reaction mechanisms. However, GRRM had previously been limited to very simple systems. This is mainly because such calculations are highly demanding even in small systems when a brute-force sampling is considered. Hence, we have developed two independent but complementary methods: anharmonic downward distortion following (ADDF) and artificial force induced reaction (AFIR) methods. ADDF can follow reaction pathways starting from local minima on the potential energy surface (PES) toward transition structures (TSs) and dissociation channels. AFIR can find pathways starting from two or more reactants toward TSs for their associative reactions. In other words, ADDF searches for A -> X type isomerization and A -> X + Y type dissociation pathways, whereas AFIR finds A + B -> X (+ Y) type associative pathways. Both follow special paths called the ADDF path and the AFIR path, and these tend to pass through near TSs of corresponding reaction pathways, giving approximate TSs. Such approximate TSs can easily be re-optimized to corresponding true TSs by standard geometry optimizations. On the basis of these two methods, we have proposed practical strategies of GRRM. The GRRM strategies have been applied to a variety of chemical systems ranging from thermal-and photochemical-reactions in small systems to organometallic- and enzyme-catalysis, on the basis of quantum chemical calculations. In this perspective, we present an overview of the GRRM strategies and some results of applications. Their practical usage for systematic prediction is also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available