4.6 Article

Exciton diffusion in near-infrared absorbing solution-processed organic thin films

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 15, Issue 8, Pages 2867-2872

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp43705h

Keywords

-

Funding

  1. Basic Science Researcher Program
  2. Quantum Metamaterials Research Center (QMMRC) through the National Research Foundation of Korea (NRF)
  3. Ministry of Education, Science and Technology [2011-0008650, 2012-0000543]
  4. Japanese Society for the Promotion of Science via a JSPS KAKENHI grant [22350084]

Ask authors/readers for more resources

We report on singlet-singlet annihilation and exciton diffusion in as-prepared p-type and annealed n-type thin films of the low-bandgap quinoidal quaterthiophene [QQT(CN)4] using ultrafast transient absorption measurements. The decay dynamics of exciton populations are well described by a one-dimensional diffusion-limited bimolecular recombination, indicating that the singlet excitons migrate preferentially along the stacking direction. Our results show that the exciton diffusion constants in QQT(CN)4 films do not vary significantly upon thermal annealing. Exciton diffusion lengths are measured to be as high as 4 and 5 nm in as-prepared and annealed QQT(CN)4 films, respectively. We also observe an influence of the excitation densities on the singlet exciton diffusion, which is attributed to phonon scattering. Because of the possibility of patterning p-n regions in QQT(CN)4 films by thermal nanolithography techniques, this study provides important insight not only into the photophysical properties of quinoidal oligothiophene derivatives but also for their future integration into high-performance p-n nanostructured near infrared light-sensing devices.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available