4.6 Article

Phonon dynamics and electron-phonon coupling in pristine picene

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 14, Issue 5, Pages 1694-1699

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp23322c

Keywords

-

Ask authors/readers for more resources

The paper reports a complete analysis of the phonon structure of crystalline picene, a recently announced organic semiconductor. Both lattice and intramolecular vibrations are investigated. An exhaustive assignment of lattice phonons is obtained through polarized Raman spectra assisted by lattice dynamics calculations based on a well tested atom-atom potential model. Raman, infrared spectra and density functional (DFT) calculations are used for the characterization of intramolecular modes. Coupling between low-frequency molecular vibrations and lattice phonons is accounted for. Molecule-to-molecule transfer integrals, as well as the Peierls and Holstein (non-local and local) coupling constants, are evaluated through the semiempirical method INDO/S (Intermediate Neglect of Differential Overlap with Spectroscopic parametrization).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available