4.6 Article

Electrochemical and electrocatalytic properties of thin films of poly(3,4-ethylenedioxythiophene) grown on basal plane platinum electrodes

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 14, Issue 41, Pages 14391-14399

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp42719b

Keywords

-

Funding

  1. Universidad Nacional de Colombia [DIB-2010100-15422]
  2. European Commission (through FP7 Initial Training Network ELCAT) [214936-2]
  3. Generalitat Valenciana (Feder) [PROMETEO/2009/045]

Ask authors/readers for more resources

The first part of this communication studies the electrochemical properties of thin films of poly(3,4-ethylenedioxythiophene) (PEDOT) grown on the three basal plane platinum electrodes via cyclic voltammetry, chronoamperometry, electrochemical impedance spectroscopy and in situ FTIR spectroelectrochemistry. In the second part of this work the redox reaction of 2,5-dimercapto-1,3,4-thiadiazole (DMcT) at these platinum modified electrodes is investigated via cyclic voltammetry and electrochemical impedance spectroscopy in order to elucidate the effect of some polymer properties on its electrocatalytic behavior, such as the ionic resistance, nature of the doping ion and the structure. First of all, it was found that the ionic resistance of the PEDOT films electrochemically synthesized on platinum electrodes increases in the order Pt(100) < Pt(110) < Pt(111) and the advantages of using single crystal platinum electrodes coated with PEDOT for the IR study of individual mobile species flux and the evolution of charge carriers during the reduction process of p-doped PEDOT were proven. On the other hand, it was found that compact, rigid and low resistance PEDOT films show higher standard charge transfer rates for the DMcT redox reaction than those that have a more porous structure and higher ionic resistance. Finally, PEDOT films doped with alkaline ions are more electrocatalytic for the oxidation process of the protonated form of DMcT.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available