4.6 Article

Excited-state proton transfer and ion pair formation in a Cinchona organocatalyst

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 14, Issue 37, Pages 13019-13026

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp41483j

Keywords

-

Funding

  1. Netherlands Organisation for Scientific Research (NWO)

Ask authors/readers for more resources

The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst (BnCPD) were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water wire'' from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available