4.6 Article

Probing the active sites for CO dissociation on ruthenium nanoparticles

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 14, Issue 22, Pages 8005-8012

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2cp40369b

Keywords

-

Funding

  1. Danish National Research Foundation
  2. EU [PIEF-GA-2008-220055]

Ask authors/readers for more resources

The active sites for CO dissociation were probed on mass-selected Ru nanoparticles on a HOPG support by temperature programmed desorption spectroscopy using isotopically labelled CO. Combined with transmission electron microscopy we gain insight on how the size and morphology of the nanoparticles affect the CO dissociation activity. The Ru nanoparticles were synthesized in a UHV chamber by gas-aggregation magnetron sputtering in the size range from 3 to 15 nm and the morphology was investigated in situ by scanning tunneling microscopy and ex situ by high resolution transmission electron microscopy. Surprisingly, it was found that larger particles were more active per surface area for CO dissociation. It is suggested that this is due to larger particles exposing a more rough surface than the smaller particles, giving rise to a higher relative amount of under-coordinated adsorption sites on the larger particles. The induced surface roughness is proposed to be a consequence of the growth processes in the gas-aggregation chamber.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available