4.6 Article

Easily manufactured TiO2 hollow fibers for quantum dot sensitized solar cells

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 14, Issue 2, Pages 522-528

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp22619c

Keywords

-

Funding

  1. Ministerio de Educacion y Ciencia of Spain [CSD2007-00007, PLE2009-0042, MAT 2010-19827]
  2. Ramon y Cajal programme
  3. Generalitat Valenciana [PROMETEO/2009/058]

Ask authors/readers for more resources

TiO2 hollow fibers with high surface area were manufactured by a simple synthesis method, using natural cellulose fibers as template. The effective light scattering properties of the hollow fibers, originating from their micron size, were observed by diffuse reflectance spectroscopy. In spite of the micrometric length of the TiO2 hollow fibers, the walls were highly porous and high surface area (78.2 m(2) g(-1)) was obtained by the BET method. TiO2 hollow fibers alone and mixed with other TiO2 pastes were sensitized with CdSe quantum dots (QDs) by Successive Ionic Layer Adsorption and Reaction (SILAR) and integrated as a photoanode in quantum dot sensitized solar cells (QDSCs). High power conversion efficiency was obtained, 3.24% (V-oc = 503 mV, J(sc) = 11.92 mA cm(-2), FF = 0.54), and a clear correspondence of the cell performance with the photoanode structure was observed. The unique properties of these fibers: high surface area, effective light scattering, hollow structure to facile electrolyte diffusion and the rather high efficiencies obtained here suggest that hollow fibers can be introduced as promising nanostructures to make highly efficient quantum dot sensitized solar cells.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available