4.6 Article

Calcium-containing diatomic dications in the gas phase

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 41, Pages 18297-18306

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp20735k

Keywords

-

Funding

  1. National Science Foundation [NSF EAR 0622775, EAR 0948878]
  2. Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)
  3. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)

Ask authors/readers for more resources

Sputtering (ion surface bombardment) of various calcium-containing powder samples with an energetic (17 keV), high-current 16 O(-) beam has produced the diatomic dications of CaSi(2+), CaP(2+), CaF(2+), CaH(2+), CaCl(2+), CaBr(2+) and CaI(2+). These molecular gas-phase species have been identified in positive ion mass spectra at half-integer m/z values; their ion flight times through a magnetic-sector mass spectrometer were roughly 10(-5) s. Most of them appear to be novel molecular ions; the stability of the latter four (CaH(2+), CaCl(2+), CaBr(2+) and CaI(2+)) had been demonstrated in previous theoretical studies, whereas only CaF(2+) and CaBr(2+) had been observed before. Here we combine the results of our experimental search with a detailed theoretical study of the remaining three systems CaSi(2+), CaP(2+) and CaF(2+). All electronic states correlating with the first dissociation channel are characterized using high level ab initio electronic structure calculations. In their ground states, we find CaSi(2+) to be a long-lived metastable molecule, whereas CaF(2+) and CaP(2+) are thermodynamically stable, with respective equilibrium internuclear distances of 6.253, 4.740, and 5.731 a(0). CaSi(2+) has a well depth of 7116 (0.88) cm(-1) (eV) and a dissociation asymptote 7956 (0.99) cm(-1) (eV) below the ground state minimum. The dissociation energy of CaF(2+) is estimated to be 3404 (0.42) cm(-1) (eV), whereas for CaP(2+) we found 2547 (0.32) cm(-1) (eV), and a barrier height of 8118 (1.01) cm(-1) (eV). Their adiabatic double ionisation energies are 22.87, 16.91, and 17.32 eV, respectively, for the F, Si, and P containing dications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available