4.6 Article

Supported colloidal nanoparticles in heterogeneous gas phase catalysis: on the way to tailored catalysts

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 43, Pages 19270-19284

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1cp22048a

Keywords

-

Ask authors/readers for more resources

Using colloidally synthesized nanoparticles for the preparation of supported catalysts offers several advantages (e.g. precise control of particle size and morphology) when compared to traditional preparation techniques. Although such nanoparticles have already been very successfully used for catalytic applications in the liquid phase, applications in heterogeneous gas phase catalysis are still scarce. One aspect, usually considered as a problem, is organic stabilizers typically employed during the nanoparticle synthesis since they or their decomposition products are supposed to block catalytically active sites on the nanoparticle surface. Thus, in many studies so far, the removal of the organic ligands prior to use in gas phase catalysis has been proposed. In this perspective article, however, we will discuss a number of benefits such ligand shells may have for heterogeneous gas phase catalysis, including the protection against chemical modification, prevention of sintering and tuning of SMSI effects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available