4.6 Article

The rotational excitation of the interstellar HNC by para- and ortho-H-2

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 18, Pages 8204-8212

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02436h

Keywords

-

Funding

  1. CNRS
  2. U. S. National Science Foundation [CHE-0848110]

Ask authors/readers for more resources

Rotational excitation of the interstellar HNC due to collisions with H-2 is investigated. We present a new four dimensional (4D) potential energy surface for the HNC-H-2 collisional system. Both molecules were treated as rigid rotors. Interaction energy was obtained from the electronic structure calculations using a single and double-excitation coupled cluster method with perturbative contributions from connected triple excitations [CCSD(T)]. The five atoms were described using the aug-cc-pVTZ basis sets. Bond functions were placed at mid-distance between the HNC center of mass and the center of mass of H-2 for a better description of the van der Waals interaction. Close coupling calculations of the inelastic integral cross sections of HNC in collisions with para-H-2 and ortho-H-2 were calculated for kinetic energies up to 800 cm(-1). After Boltzmann thermal averaging, rate coefficients were obtained for temperatures ranging from 5 to 100 K. Significant differences exist between para-and ortho-H-2 results. The strongest collision-induced rotational HNC transitions are the transitions with Delta j = 1 for collisions with para-H-2 and with ortho-H-2. The new rate coefficients should induce important consequences on the determination of HNC abundance in the interstellar medium. In particular, we expect that they will help to solve the interstellar problem of relative abundance of the HCN and HNC isomers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available