4.6 Article

Colloidal metal nanoparticles as a component of designed catalyst

Journal

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
Volume 13, Issue 7, Pages 2457-2487

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c0cp02680h

Keywords

-

Funding

  1. DFG [SFB 558]
  2. Alexander von Humboldt Foundation

Ask authors/readers for more resources

Recent advances in the synthesis of collidal metal nanoparticles of controlled sizes and shapes that are relevant for catalyst design are reviewed. Three main methods, based on colloid chemistry techniques in solution, i.e., chemical reduction of metal salt precursors, electrochemical synthesis, and controlled decomposition of organometallic compounds and metal-surfactant complexes, are used to synthesize metal nanoparticles. Their catalytic activity and selectivity depend on the shape, size and composition of the metal nanoparticles, and the support effect, as shown for many reactions in quasi-homogeneous and heterogeneous catalysis. A specially designed type of thermally stable catalysts-embedded'' metal catalysts, in which metal nanoparticles are isolated by porous support shells so that metal sintering is effectively avoided at high temperatures, are also introduced. The ultilization of pre-prepared colloidal metal nanoparticles with tuned size, shape and composition as components of designed catalysts opens up new field in catalysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available